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Abstract

Can aggregate noise shocks produce large macroeconomic fluctuations, and
if so, is there anything that policymakers can do about them? Yes and yes, if
news about idiosyncratic fundamentals is contaminated by aggregate noise. I
study a business cycle model where agents with rational expectations receive
noisy signals about future productivity. The model features dispersed informa-
tion, which allows aggregate noise shocks to produce frequent large fluctuations
in the capital stock. Because of the information friction, a policymaker with an
informational advantage can improve outcomes. I consider policies that affect
investment incentives by distorting the intertemporal wedge. I calculate the
optimal policy rule, and find that policymakers should discourage investment
booms after aggregate news shocks.
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1 Introduction

Business cycles may be driven by non-fundamental noise shocks, featuring large cap-
ital expansions and contractions. Do policymakers have any recourse? Not if agents
in the model have full information and rational expectations (FIRE). But if the econ-
omy features incomplete information, policymakers with an informational advantage
can improve outcomes. This is fortunate because incomplete information can also
amplify the effects of noise shocks on the business cycle. In this paper I characterize
this amplification and the optimal policy response.

I study noise-driven macroeconomic fluctuations in a standard business cycle
model augmented with news shocks and dispersed information. To produce such
fluctuations, shocks to macroeconomic sentiments are introduced in a standard way:
agents receive news about future productivity, but that news is not a perfect forecast,
and the error is a “noise shock.”1 When agents receive a noise shock, they behave
as if future productivity will improve, but that improvement is never realized. As a
result, noise shocks produce movements that can resemble a business cycle, without
any changes to measured fundamentals. However in typical models with noise shocks,
common information2 limits the effects of these noise shocks: noise-driven macroeco-
nomic fluctuations cannot be both large and frequent. This is because if the noise
shock variance is large, agents realize that their news process is inaccurate, so they do
not make large changes to their behavior when they receive news, and noise-driven
fluctuations will be small. Alternatively if the noise shock variance is small, then
large noise-driven fluctuations are rare.

The information friction dismantles these limits, so that noise shocks can be a
large contributor to business cycle volatility if they are sufficiently correlated across
individuals. With dispersed information, agents cannot observe the news received
by everyone in the economy; they only receive news about their own productivity.
Idiosyncratic productivity is much more volatile than aggregate productivity. So for
the same noise shock process, agents perceive their news to be more accurate than they
would under common information. As a result, they are more elastic to news and to

1This structure for noise shocks is typical in the DSGE and VAR literatures, where noise affects
agents’ forecasts of future productivity, which corrupts their choices of investment and other dy-
namic variables. Chahrour and Jurado (2018) formally define this type of noise, and show how it
is isomorphic to a variety of “news” processes. This contrasts with the typical use of noise in the
incomplete information literature, where noise affects agents’ now-casts of contemporaneous funda-
mentals. Lorenzoni (2009) is a classic example, which also features dispersed information and noise
shocks; price rigidities rather than capital provide a propagation mechanism that allows noise shocks
to have large persistent effects. One of the reasons noise appears in this way across the incomplete
information literature is the difficulty of including capital in such models, especially when they
feature endogenous signals. I apply the methodology from Adams (2021) to overcome this difficulty.

2“Common information” refers to the case where all agents in the economy have the same infor-
mation set, the terminology used by Lorenzoni (2011) and others. Typically this is equivalent to
full information, but in the literature on news and noise they are dissimilar: “full information” is
stronger, implying that all agents observe all fundamental shocks.
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noise shocks than they would be without the friction. This effect yields a possibility
result: if the noise has a large aggregate component, then the macroeconomy can
feature large noise-driven fluctuations.

The information friction also introduces a role for policy. Policymakers can im-
prove outcomes if they have more information than individuals. I study policy rules
that operate through the investment wedge, such as an investment tax. I calculate
optimal rules for policymakers with different information sets and in different mod-
els. Across these settings, the optimal policy moderates noise-driven fluctuations by
discouraging investment during booms and encouraging it during busts. This is be-
cause agents over-respond to the aggregate component of their news process, from
the perspective of the policymaker who is able to observe the rest of the macroecon-
omy. When the policymaker sees aggregate news, they intervene in agents’ consump-
tion/savings decision to make the entire macroeconomic response less elastic.

How important are noise-driven fluctuations? A growing empirical literature finds
a large role for noise or other non-fundamental shocks in contributing to business cy-
cles. Chahrour and Jurado (2022) use a non-causal VAR to identify noise shocks in
US data and find that noise explains 60% of GDP volatility and almost 40% of con-
sumption and stock market volatility at business cycle frequencies. Forni, Gambetti,
Lippi, and Sala (2017) employ a more restrictive identification strategy, using data on
stock prices and consumer sentiments in a VAR to identify noise shocks, which they
estimate as driving 14-24% of GDP volatility and 9-22% of consumption volatility,
depending on the specification. Gazzani (2020) uses the same strategy to estimate
the effects of noise in the housing market and finds that noise explains 40-50% of
short-run housing price volatility, and most of the 2001-2009 American boom and
bust. Abstracting from noise specifically, Angeletos, Collard, and Dellas (2020) cal-
culate the reduced form shocks that explain most of business cycle fluctuations; what
they identify as the “main business cycle” shock is almost entirely non-fundamental,
disconnected from present or future changes to productivity. The dispersed informa-
tion model that I study allows for noise to be as important as the empirical evidence
suggests.

In contrast, existing structural models typically imply that noise shocks are small
contributors to business cycle volatility. Chahrour and Jurado (2018) estimate several
such models using common data and noise definitions. In the RBC model of Schmitt-
Grohé and Uribe (2012), noise contributes only 5% of consumption volatility, while
in the New Keynesian model of Barsky and Sims (2012), it is 9%. However there are
exceptions: Blanchard, L’Huillier, and Lorenzoni (2013) include a large permanent
component to productivity which makes forecasts particularly sensitive to the noise
shock, and include additional rigidities in the standard New Keynesian model which
makes consumption especially forward looking; together, these ingredients allow noise
to contribute to 57% of consumption volatility, although much smaller amounts for
output and investment. Typical in these papers is the assumption of common in-
formation: agents make noisy forecasts, but they all make the same noisy forecasts.

3



When I drop this assumption in the following sections, the importance of noise in-
creases by orders of magnitude. This is the first general equilibrium business cycle
model with rational expectations and capital where noise shocks drive the majority
of output volatility.

As far as I know, this is the first study of the optimal policy response to noise-
driven fluctuations in the capital stock caused by noise shocks. Models with noise
where agents and policymakers share common information do not have a role for pol-
icy (except to resolve other frictions) because agents make the best choices given the
available information. In the incomplete information literature, there exist studies
of optimal policy to resolve different information frictions, but none consider how to
respond to capital fluctuations driven by noise shocks to forecasts of future productiv-
ity. Still, some papers come to related conclusions in dissimilar settings. A common
pattern in the literature is that agents are too elastic to noisy signals (the classic
problem of Morris and Shin (2002)) so the optimal policy is to somehow make agents
less elastic to their noisy signal. Angeletos and Pavan (2009) and Lorenzoni (2010)
both come to this conclusion considering tax and interest rate policy respectively,
in models where agents receive noisy public signals of contemporaneous aggregate
productivity that is later revealed to the policymaker. Dupor (2005) studies a busi-
ness cycle model with capital subject to reduced-form expectations shocks, and also
finds that policymakers should act to moderate the resulting noise-driven fluctuations.
With the type of structure that I study, aggregate noise shocks can microfound this
type of expectations shock, because the noise shocks cause average forecast errors.

This paper fits into several broader literatures. First, it joins the literature study-
ing optimal policy in the context of incomplete information; in addition to those cited
already, this includes Adam (2007), Nimark (2008), Baeriswyl and Cornand (2010),
Paciello and Wiederholt (2014), Angeletos and La’O (2019), Benhima and Blengini
(2020), and Angeletos, Iovino, and La’O (2020) among others. Next, it contributes
to a set of papers studying how dispersed information in business cycle models can
amplify real shocks, which includes Venkateswaran (2014), Chahrour and Gaballo
(2020), and Angeletos and Lian (2020).3 Finally, this paper joins the long literature
studying the effects of non-fundamental shocks in models with incomplete information
following Lucas (1972). Angeletos and Lian (2016) provide a recent survey.

The remainder of the paper is organized as follows. Section 2 describes the as-
sumptions of the baseline model. Section 3 describes the noise-driven fluctuations

3These papers achieve amplification through other channels than correlated noise shocks. Worker
search and matching is the amplification channel in Venkateswaran (2014), where firms are ordinarily
more responsive to the idiosyncratic component of productivity than the aggregate component, be-
cause their output is sufficiently substitutable; under dispersed information, firms’ search and hiring
is too responsive to the aggregate component. Chahrour and Gaballo (2020) features amplification
due to strategic complementarity in housing investment that affects endogenous signal precision. In
Angeletos and Lian (2020) dynamic savings decisions are strategic substitutes, so their model fea-
tures amplification because savings is more elastic to idiosyncratic discount than aggregate discount
factor shocks, and so an information friction makes households too elastic to the aggregate shock.
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and other dynamics. Section 4 then considers the optimal policy response. Section
5.2 studies how the importance of noise for the business cycle depends on assumptions
about the shock processes and other parameters. Section 6 concludes.

2 Baseline Model

This sections lays out a simple macroeconomic model with dispersed information that
contains enough features to illustrate the main conclusions for optimal policy.

The model is a Lucas-style dispersed information economy with standard real
business cycle ingredients, similar to Graham and Wright (2010) albeit with a richer
shock and information structure in order to generate noise-driven fluctuations.4 Is-
lands receive news shocks about future productivity, but news contains errors: the
noise shock. The information friction is that firms and households on each island can
observe prices and quantities on their own island, but not the aggregate economy.
Unable to disentangle aggregate noise from idiosyncratic components of their news
signals, islands respond more to noise shocks than they would if they had common
information.

The model also differs from Graham and Wright (2010) by including additional
structure in order to generate standard business cycle correlations. Empirical evidence
following Beaudry and Portier (2006) suggests that aggregate news shocks produce
comovement: output, consumption, investment, and hours all increase. And VAR
evidence studying the noise component specifically also implies comovement after a
noise shock (Forni, Gambetti, Lippi, and Sala (2017), Chahrour and Jurado (2022)). I
follow Jaimovich and Rebelo (2009) who use investment adjustment costs and capital
utilization to generate TFP and output increases after a positive news shock, and
preferences with a small wealth effect on labor supply in order to prevent substitution
towards leisure.5

2.1 Households

There is a continuum of islands I indexed by i. On each island, there is a unit
measure λ(i) = 1 of identical and infinitely lived households.

4In Graham and Wright (2010), the single aggregate shock is to productivity, and the informa-
tion friction attenuates the economy’s response to the shock. In such a model, any business cycles
are associated with changes to aggregate productivity, so additional structure is needed to pro-
duce fluctuations where aggregate investment moves without any corresponding change in measured
fundamentals.

5I adopt the approach by Jaimovich and Rebelo (2009) which is suited for a real economy in
general equilibrium. But several business cycle theories in other settings incorporate alternative
features that achieve such comovement after a news signal, including Jaimovich and Rebelo (2008)
in an open economy setting with capital and labor adjustment costs, and Blanchard, L’Huillier, and
Lorenzoni (2013) in a New Keynesian model.
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The island i representative household’s preferences over current and future con-
sumption are represented by the utility function

Ei,t

[
∞∑
s=0

βs ln
(
Ci,t+s − χN θ

i,t+s

)]
(1)

where Ci,t is the household’s consumption in period t, β is their discount factor, and
θ is their Frisch labor supply elasticity. This utility function corresponds to GHH
preferences (Greenwood, Hercowitz, and Huffman, 1988) which eliminates the wealth
effect on labor supply, so that hours may increase in response to positive news about
future productivity. The expectation operator Ei,t is conditional on the representative
household i’s information set Ωi,t.

Households earn two types of income. They supply Ni,t labor on their island, for
which they are paid real wage Wi,t. They also own the capital on their island, Ki,t,
and choose the capital utilization rate Ui,t. They rent capital services Ui,tKi,t to firms
at rental rate RK,i,t.

The representative household purchases consumption Ci,t (the numeraire) and
investment Ii,t at unit price in an economy-wide market. Therefore their budget
constraint is

Wi,tNi,t +RK,i,tUi,tKi,t = Ci,t + Ii,t (2)

Investment is used to construct new capital. A household owning Ki,t capital and
investing Ii,t faces the law of motion:

Ki,t+1 = Ii,t(1− ϕ(
Ii,t
Ii,t−1

)) + (1− δ(Ui,t))Ki,t (3)

where ϕ is a convex functions satisfying ϕ(1) = 0, ϕ′(1) = 0, and ϕ′′(1) > 0, the CEE
adjustment cost assumptions of Christiano, Eichenbaum, and Evans (2005). δ(Ui,t)
is the increasing and convex function determining depreciation from the utilization
rate.

The household’s problem is to choose sequences of Ci,t, Ii,t, Ui,t, and Ki,t+1 to
maximize (1) subject to the budget constraint (2) and law of motion (3). The solution
to this problem is characterized by a labor supply equation

Wi,t =
χθN θ−1

i,t

Ci,t − χN θ
i,t

(4)

a first order condition for utilization

RK,i,tKi,t = Qi,tδ
′(Ui,t)Ki,t (5)

and an Euler equation for capital

Qi,t = Ei,t [Λi,t+1 (RK,i,t+1Ui,t+1 +Qi,t+1 (1− δ(Ui,t+1)))] (6)
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where expectations Ei,t are conditional on representative household i’s information

set Ωi,t. The household’s stochastic discount factor is Λi,t+1 = β
Ci,t−χNθ

i,t

Ci,t+1−χNθ
i,t+1

. On

the right-hand side of (6), households discount the real return on their capital, plus
the marginal value of units of capital they carry over. Lastly, Qi,t denotes Tobin’s
marginal Q (the value of a marginal unit of capital) which is determined dynamically
by the household’s final equilibrium condition:

1 = Qi,t

(
1− ϕ(

Ii,t
Ii,t−1

)− ϕ′( Ii,t
Ii,t−1

)
Ii,t
Ii,t−1

)
+ Ei,t

[
Λi,t+1Qi,t+1ϕ

′(
Ii,t+1

Ii,t
)(
Ii,t+1

Ii,t
)2

]
(7)

which is standard for CEE investment. When households expect faster investment
growth in the future, they are incentivized to accelerate investment in the present in
order to relieve the adjustment cost. This is the mechanism that allows investment
to rise upon news of future productivity improvements.

2.2 Firms

There are two types of firms in the economy. There are intermediate goods firms that
each operate on an island indexed by i, and there are final goods firms that aggregate
the intermediate goods into final goods in an economy-wide market.

Final goods firms aggregate specialized goods Y i of type i ∈ I with a CES pro-
duction function:

Yt =

(∫
i∈I

eξi,t
(
Y i
t

) η−1
η dλ(i)

) η
η−1

(8)

with η 6= 1. ξi,t is a stochastic island-specific demand shifter.
Final goods can be used for either consumption or investment across islands.

Therefore the market clearing condition for the final goods is

Yt =

∫
i∈I

(Ci,t + Ii,t) dλ(i) (9)

Consumption is the numeraire, so final goods also have unit price. Final goods
firms purchase intermediates at price Pi,t, so their demand for intermediates is given
by the CES demand function

Pi,t = eξi,t(
Yt
Y i
t

)
1
η (10)

Intermediate goods firms are perfectly competitive and have constant returns.
The representative firm on island i in period t uses specialized capital services Ui,tKi,t

and labor Li,t with stochastic productivity Ai,t to produce output Y i
t by

Y i
t = Ai,t(Ui,tKi,t)

αL1−α
i,t (11)

Firms rent capital services at rental rate RK,i,t and hire labor at wage Wi,t from
the households on island i in period t. They sell their output at price Pi,t. The
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representative firm chooses inputs to maximize their profits, which implies that labor
and capital demands for island i are given by

Pi,tα
Y i
t

Ui,tKi,t

= RK,i,t Pi,t(1− α)
Y i
t

Li,t
= Wi,t (12)

2.3 Information

Agents on island i have perfect information about their own island, but not the
macroeconomy. They receive three noisy signals that inform them about economic
aggregates, but they are buffeted by four fundamental shocks, so they cannot perfectly
infer the state of the economy.

The first signal is productivity. In logs, productivity lnAi,t is the sum of an

aggregate component lnAt and a mean zero idiosyncratic component ln Âi,t satisfying

lnAi,t = lnAt + ln Âi,t (13)

Agents cannot observe aggregate productivity directly, and can only estimate its
value based on their island-specific productivity and other signals. The productivity
components are independent AR(1) processes:6

ln Âi,t = ρa ln Âi,t−1 + εâ,i,t εâ,i,t ∼ N(0, σâ) (14)

lnAt = ρa lnAt−1 + εa,t εa,t ∼ N(0, σa) (15)

The news signal is news about future productivity. In period t, agents on island i
receive a noisy signal about their productivity shocks κ periods into the future. The
news νi,t is given by

νi,t = εâ,i,t+κ + εa,t+κ + ζt (16)

where ζt is the “noise” shock. Noise is the error in the news signal, which prevents
islands from perfectly predicting their future productivity. The noise shock ζt is
an aggregate shock, common to all islands. This is the crucial assumption for the
possibility result: noise must be correlated across islands in order to amplify business
cycles. Section 5.1 explores how relaxing this assumption affects the amplification
result.

The third signal is demand, which provides a noisy signal of aggregate output.
Agents observe the demand function for their island’s goods, from which they infer

the quantity eξi,tY
1
η

t by equation (10). In logs, the demand signal Di,t is given by

lnDi,t = ξi,t +
1

η
lnYt (17)

6I let the autoregressive coefficient ρa be the same for both productivity processes. This is
not necessary for any of the main conclusions from the model; rather, it eliminates an additional
effect of the information friction. When idiosyncratic and aggregate productivity have different
autocorrelations, agents in a dispersed information model become uncertain about the persistence
of the productivity changes they observe, and will over or under-respond to aggregate shocks.
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Islands cannot distinguish between the effects of aggregate output Yt and the idiosyn-
cratic demand-shifter ξi,t, so lnDi,t is a noisy signal of the aggregate state. Addition-
ally, demand is an endogenous signal: ξi,t has an exogenous process, but the process
for Yt is determined in equilibrium by the choices made by households and firms.

An island’s information set Ωi,t includes all of the local endogenous variables on
island i plus the three signals, and the information set evolves by

Ωi,t = {Ωi,t−1, νi,t, lnAi,t, lnDi,t,vi,t} (18)

where vi,t is the vector of endogenous prices and quantities on island i.
Each island is affected by four exogenous independent stochastic processes: two

aggregate processes At and ζt; and two idiosyncratic processes Âi,t and ξi,t. However,
islands receive only three signals that are informative about these processes: νi,t, Ai,t,
and Di,t. With more shocks than signals, the aggregate state of the economy will not
be revealed.

2.4 Equilibrium Definition

Given infinite sequences of exogenous variables {At, Âi,t, ζt, ξi,t} for all i ∈ I, a com-
petitive equilibrium in this economy consists of infinite sequences of prices, {Pi,t,Wi,t, RK,i,t}
for all i ∈ I; allocations {Ci,t, Ii,t, Ui,t, Ki,t, Li,t, Y

i
t , Yt} for all i ∈ I; and information

sets Ωi,t for all i ∈ I such that:

1. Households maximize utility (1), subject to the constraints (2) and (3)

2. Intermediate firms choose allocations to maximize profits, satisfying the pro-
duction function (11) and factor demands (12).

3. Final goods firms choose allocations to maximize profits, satisfying the produc-
tion function (8) and input demands (10).

4. The goods markets must clear, satisfying equation (9).

5. Firm productivities are given by (13).

6. News signals are given by (16).

7. Information sets evolve by (18).

2.5 Calibration

I calibrate the model to resemble the US economy (Table 1). One time period repre-
sents a year, so I select the discount factor β = 0.95 to target a 5% steady state annual
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return. I parameterize depreciation as a constant elasticity function υUω
i,t.

7 The de-
preciation function δ(Ui,t) is parameterized so that the steady-state depreciation rate
is δ(Ū) = 0.05, and the capital share is set to α = 0.38, both to match post-war av-
erages from the US NIPA. I calibrate the adjustment cost and labor supply elasticity
parameters as in Jaimovich and Rebelo (2009): ϕ′′(1) = 1.3 and θ = 1.4. It is impor-
tant that η > 1 so that islands’ outputs are substitutes; in the Cobb-Douglas case of
η = 1, island revenue is unaffected by productivity because any change in output is
exactly offset by a change in price. Moreover, when islands’ output is not sufficiently
substitutable, the Blanchard-Kahn condition is not satisfied, so I select a large value,
setting η = 10. Therefore islands are interpreted as relatively disaggregated industries
producing close substitutes, rather than large complementary sectors.

The parameters for the idiosyncratic productivity process (14) are the GMM es-
timates by Lee and Mukoyama (2015) for US manufacturing plants using plant-level
data from the Annual Survey of Manufactures. I use US KLEMS data to estimate
the process (15) for aggregate productivity, which crucially has a smaller standard
deviation than idiosyncratic productivity. The standard deviation of the idiosyncratic
demand shock σξ is not well disciplined by the literature; I choose a moderate value,
because a small variance would closely resemble common information while a large
value would eliminate the information signal provided by aggregate demand.

The main parameter governing the macroeconomic effects of noise is the standard
deviation of noise shocks, σζ . After calibrating the other parameters, I choose σζ =
0.115 in order to target the contribution of TFP noise shocks to the business cycle.
Specifically, I match the 60% share of aggregate output variance that Chahrour and
Jurado (2022) estimate is due to TFP noise shocks. Thus σζ is explicitly chosen to
resolve the following puzzle: reduced form studies find a large role for noise shocks in
output volatility that is not explained by existing FIRE business cycle theories. One
way to interpret this parameter choice is that the calibration of σζ and σa imply that
only 1% of the variance of aggregate productivity shocks can be anticipated using
aggregate data. Lastly, I choose κ = 4 to be the number of years between a news
signal and realized productivity.

This calibration is chosen as conventionally as possible. Still, several parameters
are not well informed by prior research, in particular σζ , σξ, η, and κ. Therefore in
Section 5.2 I explore the model results depend on these parameter choices. In general,
adjusting these parameter values do not change the main qualitative conclusions.

I linearize the equilibrium conditions and solve the model using Signal Operator
Iteration (Adams, 2021). The linearized model is reported in Appendix A.

7The constant elasticity depreciation function has only one parameter to be chosen: υ pins down
the steady-state depreciation rate. The remaining steady state equations determine the depreciation
elasticity, ω = 2.05.

10



Parameter Interpretation Value
β Discount factor 0.95
α Capital share 0.38
η Elasticity of substitution 10
θ Labor supply elasticity 1.4

δ(Ū) Steady-State Depreciation 0.05
ϕ′′(1) Investment Adjustment Cost 1.3
ρa Persistence of technology shock 0.84
σâ Standard deviation of idiosyncratic technology shock 0.30
σa Standard deviation of aggregate technology shock 0.013
σζ Standard deviation of aggregate noise shock 0.115
σξ Standard deviation of idiosyncratic demand shock 0.10
κ Periods between news and realization 4

Table 1: Baseline calibration

3 Equilibrium Analysis

In this section I examine how the macroeconomy experiences noise-driven fluctuations
in equilibrium. First I describe how agents respond to information. Second, I examine
how aggregate shocks affect the macroeconomy. Third, I study how the information
friction exacerbates the fluctuations. Finally, I describe how the information friction
amplifies business cycle volatility in general.

3.1 Decision-making

Agents observe three noisy signals: news about future productivity, their current
realized productivity, and demand for their goods. But agents are affected by four
independent fundamental shocks, so these signals cannot be perfectly revealing. Fig-
ure 1 plots islands’ impulse responses to a unit innovation of the news signal. These
are not the response to any single shock, which agents cannot observe. Rather, they
are the responses to learning new information, i.e. a forecast error that is a linear
combination of many fundamental shocks.

When agents receive news that their productivity is likely to improve, they want
to immediately increase consumption because they expect future income to rise. They
also want to increase investment, in order to take advantage of higher future returns
on capital. To meet both of these desires, output must rise. This is possible because
the GHH preferences eliminate any wealth effect on labor supply, which is determined
entirely by the wage. Productivity and capital will only increase with a delay, so the
behavior of capital utilization determines how the marginal product of labor and wage
respond on impact.

Why does utilization increase after a news innovation? The marginal cost of cap-
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Figure 1: News Innovation Impulse Responses

ital utilization is the value of the marginal depreciation of the capital stock. The
marginal value of capital falls on impact, so the cost of utilization also falls. This
decline in the marginal value of capital is due to the CEE form of the investment
adjustment costs, which implies that the marginal value of capital falls when invest-
ment accelerates. Because utilization rises, output rises, the marginal product of
labor rises, and so does labor itself. Thus the islands experience comovement after a
positive news innovation: consumption, investment, output, labor, and utilization all
increase.

On average, the news is followed by a future increase in productivity, so after 4
periods consumption, investment, hours, and output all rise further. Capital accu-
mulates over time, propagating the boom.

However, this is only the average response. Sometimes the news signal is driven
by a future productivity shock, but sometimes it is driven by a noise shock. After
4 periods, the islands find out if their productivity behaves as predicted. If not,
they over- or under-invested. For an individual this risk is rare: the news signal is
a relatively accurate predictor of island-specific productivity. Therefore agents trust
their signals and an island’s response to news resembles that in Jaimovich and Rebelo
(2009).

But the aggregate economy behaves very differently than an individual island,
because while the forecast error on productivity is small for any given island, the
errors are correlated across islands and relatively large in the aggregate.
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3.2 Aggregate Dynamics

There are two aggregate shocks that can move the macroeconomy: the shock to
aggregate productivity and the noise shock. The remaining shocks - demand innova-
tions and island-specific productivity - are purely idiosyncratic and cannot move the
macroeconomy.

A positive aggregate productivity shock first generates a news innovation on all
islands. Aggregate consumption, investment, and output increase (Figure 2, panel
(a)). After four periods, productivity increases, raising aggregate output and other
series again. This economic boom is even larger than the average response to a news
signal in Figure 1 for two reasons. First, the productivity improvement is more than
islands expect, because news is not a perfect forecast of productivity. Second, the
productivity improvement is economy-wide, increasing demand from other islands
relative to a purely idiosyncratic shock. The resulting aggregate patterns resemble a
productivity improvement in a typical business cycle model with news.

(a) Aggregate Productivity Shock (b) Aggregate Noise Shock

Figure 2: Fundamental Shock Impulse Responses

An aggregate noise shock is a common error in all islands’ news signals. On impact,
it is exactly the same as an aggregate productivity shock (Figure 2, panel (b)). Agents
expect future productivity to be high, so they raise consumption and investment.
However after four periods, productivity does not increase as expected. Households
realize they are poorer than expected; they reduce consumption and investment, but
do so slowly because of the investment adjustment costs. The marginal value of
capital falls, so utilization, labor, and output all fall faster than the capital stock,
which declines slowly because investment remains elevated.
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3.3 Noise-Driven Fluctuations

The effects of a noise shock are plotted in Figure 2, panel (b). The economy expe-
riences a boom and bust that looks like a typical business cycle with comovement,
except without any change in productivity. Although if productivity is mismeasured
by excluding utilization, it will resemble a traditional business cycle model in which
measured productivity also rises. This noise-driven fluctuation occurs with or without
the information friction, but the boom and bust are much larger with it.

Noise-driven fluctuation are exacerbated by the information friction. To under-
stand this effect, I compare three information structures: (1) the baseline dispersed
information model where agents only see signals on their own islands, (2) a common
information version of the model where agents see the information sets of all islands
including their news shocks but not its constituents components, and (3) a full in-
formation version in which agents have common information and can also observe
all fundamental shocks so that they know whether productivity or noise drive news
signals. I plot the macroeconomic responses to aggregate shocks with these three
information structures in Figure 3.

Agents are more responsive to noise shocks than if they had common information
(Figure 3, panels (b) and (d)). Why? In the baseline model, the news signal (16) is
the sum of three indistinguishable components: the idiosyncratic productivity shock
εâ,i,t+κ, the aggregate productivity shock εa,t+κ, and the noise shock ζt. While under
common information, agents can identify the aggregate component of the news signal:

νi,t − εâ,i,t = εa,t+κ + ζt (19)

The noise shock is a relatively large component of this aggregate news signal, com-
pared to the baseline model’s news signal (16). As a result, agents are more responsive
to the baseline news signal, because it is more likely to be driven by changes to pro-
ductivity instead of noise. Thus aggregate variables are more elastic to noise shocks
under the information friction.

Similarly, agents are more responsive to noise shocks in the common information
model than in the full information model, where there are no noise-driven fluctuations.
Under full information, agents see all of the shocks, so they can fully distinguish
the noise from concurrent productivity shocks. Therefore they do not change any
allocations in response to a noise shock (Figure 3, panels (b) and (d)). This is the
first-best outcome for agents, as they have a strictly larger information set than in
the other models.

Islands cannot tell if they are in a noise-driven expansion; they have rational
expectations and forecast optimally conditional on their information sets. But if
policy makers have more information than islands - say, if they observe investment,
consumption, or other macroeconomic aggregates - they can improve outcomes even
without fully eliminating the information friction. I study this possibility in Section
4.
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(a) Productivity Shock: Consumption Distor-
tion

(b) Noise Shock: Consumption Distortion

(c) Productivity Shock: Output Distortion (d) Noise Shock: Output Distortion

Figure 3: Distortions due to the Information Friction

3.4 Amplification

The information friction also amplifies the economy’s response to aggregate produc-
tivity shocks (Figure 3, panels (a) and (c)) relative to the common information case.

Under common information, the news signal is a poor predictor of aggregate pro-
ductivity, so households are relatively inelastic to the aggregate news signal (19),
compared to the dispersed information case where they could not disentangle the
aggregate news signal from their more informative idiosyncratic news. Therefore
the common information households barely adjust their consumption or investment
in anticipation of future aggregate productivity changes. Conversely, if households
have full information, then they perfectly predict future aggregate productivity, so
consumption and investment move much more in anticipation.

After the productivity shock is realized, the economy booms under all information
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structures. However, the more elastic investment is to the productivity shock, the
larger the boom. The dispersed information economy preemptively accumulates more
capital than the common information economy, so the dispersed information boom
is larger once the productivity improvement arrives. The full information economy
is even more elastic to aggregate productivity shocks, so it features an even larger
boom.

On net, the information friction amplifies aggregate volatility relative to either of
the other information structures. Table 2 documents this amplification, reporting the
variance of macroeconomic aggregates relative to the first-best full information equi-
librium. The dispersed information economy is more volatile because the information
friction amplifies the responses to noise shocks, while generating similar responses to
aggregate productivity. However the noise shocks are the largest contributor; even
though noise does not produce as large of a boom as productivity (Figure 3) the
noise shock has much larger variance. The contribution of the noise shock to aggre-
gate volatility can be seen by examining the variance decomposition of how much
different shocks contribute to the variances of the macroeconomic aggregates.

Information Structure Consumption Investment Capital Output

Aggregate variance relative to full information
Dispersed Information (baseline) 166% 407% 217% 184%

Common Information 75% 67% 69% 73%

Share of variance due to noise shock
Dispersed Information (baseline) 55.0% 84.0% 66.3% 60.0%

Common Information < 0.1% 0.2% < 0.1% < 0.1%

Table 2: Volatility Amplification

The information friction allows noise shocks to drive a large share of aggregate
volatility. Table 2 documents the contribution of noise shocks under dispersed in-
formation and under common information. With common information, the noise
shocks contribute nearly nothing to aggregate volatility, because agents know their
aggregate news signals are noisy and thus barely respond to them. Under dispersed
information, agents are much more responsive to the news signals because they are
informative about idiosyncratic productivity. The noise shock’s effects in the com-
mon information model is consistent with traditional findings that noise shocks in
FIRE RBC models have small effects on aggregate volatility (Chahrour and Jurado,
2018). The information friction allows for noise shocks to play a much larger role in
driving business cycles, consistent with reduced form empirical evidence (Chahrour
and Jurado, 2022); indeed, the noise variance σ2

ζ is calibrated in order to deliver this
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result. Adjusting some parameter values can increase the contribution of the noise
shocks by even more; Section 5.2 discusses these effects.

4 Optimal Policy

In this section I study policy rules by which policymakers change economy-wide in-
vestment incentives in response to aggregate shocks. If policymakers have more infor-
mation than agents in the model, policy can improve outcomes. I find that the optimal
policy dampens volatility by discouraging investment after a negative aggregate news
signal.

Do policymakers have an informational advantage? Empirical evidence suggests
that they do. Famously, Romer and Romer (2000) find that the Federal Reserve has
more information about future inflation and GDP than is available to public, which
allows the Fed to forecast more accurately than private forecasters. Recent work
by Nakamura and Steinsson (2018), Jarociński and Karadi (2020), and Miranda-
Agrippino and Ricco (2021) among others reveals that a large component of the
macroeconomic response to monetary policy shocks is due to an information effect,
whereby the central bank’s private information is revealed to the public.

If allowed, a policymaker with superior information can simply share their in-
formation with households to improve welfare by relaxing the information friction.
I do not allow them to do so. Instead, I consider second-best constrained-optimal
policies where the information friction cannot directly be subverted. This is because
the information friction should not be taken too literally; the literature considers
these frictions to represent endogenous ignorance of some variables, as in Sims (2003)
and other rational inattention theories, rather than fundamental constraints. In-
deed, a large empirical literature finds that agents willfully disregard macroeconomic
aggregates that are relevant for forecasting.8 Agents choose not to employ useful in-
formation, even when policymakers share it freely. For example, much of agents’ poor
inflation forecasting is explained by their poor inflation perceptions (see e.g. Jonung
(1981) or Ranyard, Missier, Bonini, Duxbury, and Summers (2008) for household
evidence, and Kumar, Afrouzi, Coibion, and Gorodnichenko (2015) for firms).

One reason agents might not be aware of time series that are useful for forecasting
aggregates is that they rarely have a need to form expectations over aggregate vari-
ables. It is more relevant to forecast their own prices, incomes, and circumstances,
which they tend to do more accurately (Andrade, Coibion, Gautier, and Gorod-
nichenko, 2022). So instead I focus on policies that directly affect agents’ decisions,
while still allowing them to learn endogenously from the policies.

8See for further examples Coibion, Gorodnichenko, and Kamdar (2018), Coibion, Gorodnichenko,
and Ropele (2020), Kohlhas and Walther (2021), Candia, Coibion, and Gorodnichenko (2021), or
D’Acunto, Malmendier, and Weber (2023) among many others.
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4.1 Policy Rules

The instrument with which policymakers influence the economy is the investment
wedge τi,t. The wedge has an aggregate component τt, which policymakers control,
and an idiosyncratic component ετ,i,t that is stochastic and island-specific:

τi,t = τt + ετ,i,t

The wedge τi,t modifies the Euler equation (6) by

Qt = eτi,tEi,t [Λi,t+1 (RK,i,t+1Ui,t+1 +Qi,t+1(1− δ(Ui,t+1)))] (20)

The investment wedge is a reduced form stand-in for any policy that distorts aggregate
savings and investment decisions. This could be direct capital taxes, or policies
that affect the wedge in other ways; Chari, Kehoe, and McGrattan (2007) explore
how financial frictions or other model features manifest as an investment wedge.9

Manipulating this wedge is a useful method for improving outcomes, because it affects
the allocation of goods between consumption and investment, and the consequence of
the information friction is that consumers consume too much or too little in response
to different shocks.

When the investment wedge τi,t is included in the model, I assume that agents
observe the wedge directly. This introduces a fourth signal to an agent’s information
set, so an additional shock is needed to maintain the information friction. This is why
I assume the wedge is affected by ετ,i,t, an island-specific shock, in addition to the
economy-wide policy. I let this shock be purely idiosyncratic so as not to introduce
an additional source of aggregate volatility. The standard deviation of this shock is
set to στ = 0.05, the cross-sectional standard deviation of interest rates for European
firms (Rojas, 2018).

The policies are simple linear rules that apply in perpetuity. This is akin to the
Taylor-type rules commonly studied in New Keynesian models, rather than Ramsey
plans that address dates of implementation and time consistency. At any point in
time, a policymaker might have an incentive to lie to households and deviate from the
rule; I do not allow them to do so. In order to keep the analysis tractable, I consider
policies parameterized by at most two coefficients, depending on the information set
of the policymaker.

If the policymaker has common information, they can observe the aggregate news
signal (19): the sum of the aggregate productivity shock εa,t+κ and the aggregate

9As another practical example, this wedge might also represent convenience yields. If financial
assets provide utility from liquidity or other properties, it introduces an investment wedge in the
Euler equation corresponding to the asset, as in Krishnamurthy and Vissing-Jorgensen (2012) or
Nagel (2016). Capital can either provide convenience yields itself or be repackaged into safe and
risky asset tranches to take advantage of the yields as in Caballero and Farhi (2018). Monetary
policymakers might then affect convenience yields by directly purchasing risky claims to capital,
which the Federal Reserve did during the 2020 recession (D’Amico, Kurakula, and Lee, 2020).
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noise shock ζt. But they cannot distinguish between the two components. In this
case, the policy rule is

τt = bν

(
κ−1∑
k=0

εa,t+κ−k + ζt−k

)
(21)

bν is the coefficient on both news and noise shocks, which are co-linear to the policy-
maker. κ is the number of periods between when news is received and productivity
is realized. The summation appears so that the policy is implemented uniformly over
the entire window between news and realization.

If the policymaker has full information, they can separately identify the noise
shock ζt from news about the aggregate productivity shock εa,t+κ. In this case, the
policy rule is

τt = ba

(
κ−1∑
k=0

εa,t+κ−k

)
+ bζ

(
κ−1∑
k=0

ζt−k

)
(22)

With full information, policymakers can respond to news and noise shocks differently,
so the policy rule has two parameters: ba is the coefficient on aggregate productivity
shocks, and bζ is the coefficient on noise shocks.

I also consider an information structure where policymakers have no information
about the households’ noise shocks. Instead, policymakers receive their own noisy
signal ψt of aggregate productivity:

ψt = εa,t+κ + ζGt (23)

where the noisy shock ζGt is i.i.d. with the same variance as the households’ noise
shock ζt. Thus the policymaker’s noisy signal ψt is as informative about productivity
as the common information signal νt. One benefit of this approach is that the idiosyn-
cratic shock to the intertemporal wedge ετ,i,t is no longer necessary to maintain the
dispersed information structure. Therefore, when studying this information structure,
I set V ar(ετ,i,t) = 0. Introducing this additional aggregate shock that is not directly
observed by households implies that even when agents observe the aggregate policy
instrument τt directly, neither common nor full information are revealed. There are
still more shocks than signals, and different islands make different forecasts. How-
ever, the policymaker no longer has an informational advantage; it reveals its private
information through the policy instrument.

4.2 Optimal Policy

The policymaker chooses a rule that maximizes expected welfare. I follow a standard
approach (Rotemberg and Woodford, 1997): policymakers maximize the uncondi-
tional expected discounted utility of a household, i.e. the unconditional expectation
of equation (1) over time and households. Appendix B details how this welfare objec-
tive is calculated, including how to account for the effects of policy on the stochastic
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steady state. This approach is useful for tractability, as it avoids issues of time in-
consistency that typically arise in policymaking problems.

To find the optimal policy, I search for the policy parameters that maximize
the welfare objective. When policymakers have common information, this is a one-
dimensional search for bν , the coefficient on the aggregate news signal. When pol-
icymakers have full information, it is a two-dimensional search for ba and bζ , the
coefficients on aggregate productivity and noise respectively. This second case allows
for policy outcomes that are at least as good as when policymakers are restricted to
common information, which is nested as a special case when ba = bζ .

Table 3 reports the optimal policy parameters for each information structure.

Policy Rule Parameter values Consumption-equivalent improvement

No policy bν = 0, ba = 0, bζ = 0, bψ = 0 0%

Common information optimum bν = −0.13, ba = 0, bζ = 0, bψ = 0 1.6%

Full information optimum bν = 0, ba = 0.24, bζ = −0.14, bψ = 0 2.5%

Noisy signal optimum bν = 0, ba = 0, bζ = 0 , bψ = 0.004 < 0.01%

Table 3: Optimal Policy

Consumption-equivalent improvements are the welfare improvements relative to the no-policy
baseline, expressed as percentages of the deterministic steady state consumption level. Under
“common information”, the policymaker sees the average noisy signal νt observed by households.
The “full information” policymaker sees the true shock processes for at and ζt. The “noisy signal
optimum” refers to policymakers who do not access household information, but instead observe a
noisy signal ψt of aggregate productivity. Policy parameters are elasticities of the investment
wedge to these signals.

When policymakers have common information, their best policy is to “lean against
the wind.” The optimal coefficient on aggregate news is bν = −0.13, which says that
policymakers should discourage investment after a positive news signal. Absent any
policy, agents increase investment after a news shock, so the optimal policy dampens
the aggregate response. This is because, from the perspective of the informed pol-
icymakers, islands are responding “too much” to their news signals, which conflate
informative signals about idiosyncratic productivity with noisy signals about aggre-
gate productivity. Adopting this policy cuts the consumption standard error by more
than a half.

When policymakers have full information, they can respond differently to aggre-
gate productivity and noise shocks. In response to an aggregate productivity shock,
the optimal policy amplifies agents’ response: ba = 0.24 says that when agents increase
investment after a positive news shock, the policy should induce them to increase in-
vestment even further. Conversely, the optimal policy dampens agents’ response to
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an aggregate noise shock: bζ = −0.14 says that when agents increase investment
after a positive aggregate noise shock, policy should encourage them to invest less.
Adopting this two-parameter policy raises consumption-equivalent welfare by 2.5%
of steady-state consumption, roughly one and a half times as much as the restricted
common information policy.10 Still, these values are small in absolute magnitude
because the welfare costs of business cycles are famously small when measured as
aggregate consumption equivalents (Lucas, 1987).

When policy makers observe their own noisy signal of productivity ψt instead
of seeing the households’ noise, their optimal policy is relatively muted. Their goal
is still to boost investment after receiving positive news about future productivity,
but the policy parameter bψ is small. Policymakers are inelastic to their signal,
because it is noisy and they risk introducing additional non-fundamental volatility
to the macroeconomy by mistakenly responding to their noise shocks. But most
importantly, their noise is uncorrelated with the households’ information. In contrast,
what was useful about the common information signal νt is that it was informative
about the noise that affected households ζt, even though it was an equally poor signal
of productivity. But why is bψ not even smaller? Any non-zero value reveals the
policymaker’s information, but simply sharing information is not optimal when there
are more shocks than signals. The policymaker still has an incentive to correct the
inefficiency caused by households placing too little weight on their own signals when
forecasting (Morris and Shin, 2002).11

The common pattern is that optimal policy dampens the investment response to
noise shocks whenever possible. Under both common and full information structures,
policymakers are able to more accurately now-cast the noise shock than individual
islands. It is wasteful for islands to raise investment after a noise shock, so when
policymakers expect that there was an aggregate noise shock, they dampen islands’
investment response.

Figure 4 demonstrates how the optimal policy dampens the output response to
news. The solid blue line plots the impulse response of aggregate output when there
is no policy intervention. If the policymaker has common information (the dashed
red line), they discourage investment when there is a positive news signal. Whether
the news signal is driven by future productivity (panel (a)) or by a noise shock (panel

10It is difficult to improve further with a policy rule as simple as (21) or (22). In principle, a fully
dynamic, island-specific policy rule might be able to recover the first-best full information equilib-
rium. But such a policy rule would be impossibly complicated. After all, the island’s equilibrium
choices are infinite dimensional objects: irrational lag operator polynomials of current and past
shocks (Huo and Takayama, 2016). Instead, the simple policy rule is not flexible enough to fully
counteract the effects that optimism about far-future productivity has on concurrent consumption.

11Another force helps keep bψ small. The more precise the noisy signal, the closer the economy
moves to the first-best when agents learn the policymaker’s information, and the less a policymaker
can gain by distorting the investment margin. In the extreme case where the policymaker’s signal has
V ar(ζGt ) = 0, then it would be optimal to choose bψ arbitrarily small, so that the policy instrument
would reveal the productivity shock exactly and households could infer the values of all shocks.
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(b)) the output IRF falls below the IRF corresponding to no policy. If a noise shock
drove the news signal, then the resulting macroeconomic fluctuation is much smaller
thanks to the policy. But there is a trade-off: if a productivity shock drove the news
signal, then there is too little investment and the economy does not boom enough.

However in the full information case (the dotted yellow line) the policymaker has
more flexibility. They can do even better by implementing different changes to the
investment wedge depending on whether the driving shock is news or noise. As before,
they dampen the investment response to a noise shock, so output booms by less (panel
(b)). But they also magnify the investment response if the news is driven by future
productivity, so output booms by more (panel (a)). This is because agents know that
their news signal might be caused by a noise shock, and do not respond as much as
they would if it accurately predicted productivity. A policymaker who knows if news
is driven by productivity can make agents better off by amplifying their response.

(a) Aggregate Productivity Shock (b) Aggregate Noise Shock

Figure 4: Policy Effects on Output Impulse Response Functions

The parameter signs are the most meaningful results in Table 3. The actual
parameter values are more challenging to draw conclusions from. For example, bν =
−0.13 is a small elasticity, but that’s because the GHH preferences are close to log
utility, which makes their consumption-saving decision sensitive to the interest rate.
It is more useful to examine the quantitative changes to household behavior, where the
effects are large. In the case where the policymakers have common information, the
optimal policy reduces the immediate investment elasticity to aggregate news from 0.5
to 0.2 (Figure 4). And when policymakers have full information, the optimal policy
reduces the immediate consumption elasticity to noise shocks by a similar magnitude.
The relevant conclusion is not that the investment wedge should have exactly a −0.13
elasticity to aggregate news, but rather that the policy should significantly moderate
the investment response in order to dampen the macroeconomic fluctuation caused
by a noise shock.
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The qualitative conclusion that policy should “lean against the wind” with re-
gards to noise echoes Dupor (2005). But in contrast to noise shocks, Dupor studies
the optimal policy response to “expectations shocks” which are reduced form be-
havioral distortions to beliefs about future productivity. The policy instrument is
money growth, which has real effects in a monetary model with Rotemberg (1982)
pricing and capital adjustment costs. Households have standard preferences, so with-
out a policy intervention, the expectations shock causes a large increase in output,
investment, labor, and real interest rates, and a large decrease in consumption. The
monetary authority perfectly controls inflation, so it affects the real economy by ma-
nipulating the labor wedge. Dupor finds that the optimal response to expectations
shocks is to prevent the capital expansion by driving up the labor wedge to create a
recession. Thus, whether the average forecasting error is exogenous or microfounded,
and whether the policy instrument is a labor or investment wedge, the conclusion is
that policymakers should counteract the investment boom.

4.3 Policy Trade-offs

What trade-offs does a policymaker face when setting their policy rule for the in-
vestment wedge? The benefits and costs of the policy are intertemporal: the more
aggressively a policymaker moderates the effects of noise in the short run, the worse
misallocation they create in the long-run.

To illustrate this trade-off, it is useful to examine how different policy rules affect
the dynamics of household marginal utility. The policymaker’s objective is to max-
imize expected household welfare, and one component of the welfare function is the
variance of the stochastic discount factor. This component of welfare is maximized
by smoothing household marginal utility over time. The investment wedge is a useful
tool for accomplishing this aim - the policymaker can directly affect expected marginal
utility growth through the Euler equation. But its usefulness has limits: the wedge
can easily distort substitution effects, but struggles to control income effects. This
limitation creates a trade-off. Smoothing marginal utility in the short run leads to
too much or too little capital accumulation, so that after the signal horizon κ expires
and households learn about productivity, there is a large consumption adjustment.

Figure 5 demonstrates the trade-off. Panel (a) plots the impulse response of
average marginal utility to the noise shock ζt under several policy rules. In each case,
the policymaker has full information, and adopts the productivity elasticity from the
optimal policy rule (ba = 0.24), but a different elasticity to the noise shock bζ . When
the policy is passive (bζ = 0, the dashed blue line), agents respond as described in
Section 3: after a noise shock, they expect high future productivity, so they increase
investment, and pay for it by decreasing consumption. Thus the shock increases
marginal utility, but after no productivity improvement is realized, agents consume
out of their accumulated capital, and marginal utility falls below the steady state for
many periods. This impulse response function is relatively smooth before the signal
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(a) Marginal Utility IRF to a Noise Shock (b) Effects of Policy on Welfare Components

Figure 5: Intertemporal Policy Trade-offs

horizon expires (the shaded gray region). But it is not very smooth afterwards; the
variance of marginal utility growth is large. The policymaker can do better.

When the investment wedge is especially elastic to the noise shock (bζ = −0.28,
the dotted red line), the policymaker aggressively discourages investment, so marginal
utility falls after the shock, then jumps up when no productivity improvement is real-
ized. The benefit of this aggressive policy is that marginal utility growth is effectively
smoothed after the signal horizon. This is because capital is well below the steady
state and adjustment is costly, so the economy grows gradually. However the cost
of this aggressive policy is that marginal utility is not smoothed at all in the initial
periods (the shaded gray region). The optimal policy (solid purple line) balances
these trade-offs so that marginal utility is relatively smooth over its entire response.

Of course, there is more to welfare than the variance of the average stochastic
discount factor. A decomposition of the welfare function quantifies the general trade-
off between the pre- and post-realization periods. Specifically, the welfare calculation
is a function of variances and covariances of the endogenous variables. Covariances
are linear combinations of pre- and post-realization terms, so expected welfare can
also be decomposed into pre- and post-realization components:12

E [Wi,t] = WPre +WPost

WPre captures the component of the welfare function that is due to the variances and
covariances in the first κ periods after shocks. The residual component WPost includes
all of the effects after the κ-period horizon, when signals either realize as productivity
or noise.

The main policy trade-off is between the WPre and WPost components of expected
welfare. Figure 5 panel (b) illustrates the trade-off by plotting the value of each com-

12Appendix B.3 derives this decomposition.
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ponent for a range of policy parameters. The expected welfare is negative, because
it is calculated relative to the FIRE optimum, as described in Appendix B. When
policymakers are passive in response to a noise shock (bζ = 0), the post-realization
component (dotted yellow line) is most negative; this is consistent with the poor
marginal utility smoothing outside of the gray region in panel (a). When policymak-
ers are aggressive in response to a noise shock (bζ = −0.28), the pre-realization com-
ponent (dashed red line) is most negative; this is consistent with the poor marginal
utility smoothing inside the gray region in panel (a).

The policymaker would like to balance this trade-off. The policy is optimal when
the marginal benefit of increasing WPre equals the marginal cost of decreasing WPost.
This optimal value (dotted black line at bζ = −0.14) maximizes the total expected
welfare (solid blue line).

4.4 Incentives or Information?

There are two channels through which the policy affects individuals. The first is the
incentive channel: when the intertemporal wedge increases, it distorts the incentives
for individuals to save or consume. This is the main mechanism that I have discussed
thus far. However there is a second channel: changes to the intertemporal wedge
contain information about the aggregate state of the economy, because policymakers
have an informational advantage.

(a) Aggregate Productivity Shock (b) Aggregate Noise Shock

Figure 6: Effects of Policy Information Content on Output Impulse Responses

What is the relative importance of these channels? To explore this question, I
examine how the dynamics are affected when I change the informational content of
the intertemporal wedge. The wedge τi,t is determined by both aggregate policy
and an idiosyncratic shock ετ,i,t (21). Therefore the idiosyncratic shock variance σ2

τ

controls how informative the wedge is about the aggregate policy choice, and thus the

25



aggregate state of the economy. For example, when σ2
τ is large, the wedge τi,t has low

correlation with aggregate news, and thus little power for predicting productivity. In
contrast, when σ2

τ is small, the wedge is highly correlated with aggregate news due to
the policy rule, so observing the wedge affects individuals’ forecasts and behavior.

(a) Aggregate Productivity Shock (b) Aggregate Noise Shock

Figure 7: Effects of Policy Information Content on Consumption Impulse Responses

Figure 6 plots how changing the information content of the intertemporal wedge
affects GDP dynamics. The blue line is the IRF for output in the baseline model
without any policy. All other lines plot economies where policymakers have common
information, with the optimal policy parameter bν set as in Table 3. The solid green
line is the case where the information channel is shut down: σ2

τ is large and households
infer nothing about the aggregate state from their intertemporal wedge.13 The thick
dashed red line is the opposite: policy is very informative because the intertemporal
wedge nearly reveals the aggregate news signal.

Regardless of how informative it is, the policy serves to raise output in the short
run in order to lower it in the medium run. When aggregate productivity (panel
(a)) or noise (panel (b)) increase, policymakers see an aggregate news signal (19)
and increase the average intertemporal wedge, encouraging consumption on impact
(Figure 7). To afford the additional consumption, islands raise output and reduce
investment. So after productivity is or is not realized, the economy has less capital
and returns to steady state faster.

When the information channel is shut down, policy has a muted effect (the solid
green line in Figures 6 and 7). Households only increase consumption by a modest
amount relative to output, so investment remains elevated and capital accumulates,
prolonging the boom and bust.

13The infinite variance of the idiosyncratic wedge should not be interpreted literally - this would
imply an infinite variance of asset prices, per equation (20). Rather, this is the outcome when
households are assumed to use no information from the intertemporal wedge when forecasting.
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However, when the policy contains information about the aggregate economy,
the effects on output and consumption are magnified. When households see the
investment wedge rise, they recognize that their observed news was more likely to be
driven by aggregate noise shocks. So they have less incentive to invest, and instead
raise current consumption even further.

In all cases, the policy encourages consumption and discourages investment after
positive aggregate news. When the information channel is larger, households are
more elastic to the policy instrument, and their response moves in the same direction
relative to the case without policy. In the baseline calibration (the dashed black
line) the information effect appears large relative to the incentive effect. But that
does not imply that incentives are unimportant, because these comparisons keep the
policy parameter constant. Rather, if the policy were less informative, the optimal
policy elasticity would be much larger, in order to effect similar moderation of the
noise-driven fluctuation.

5 Sensitivity Analysis

This section studies two sensitivity analyses. First, I allow noise shocks to have an
idiosyncratic component, and vary its contribution to the news signal. Second, I
study how business cycle amplification is affected varying the calibrated parameters.

5.1 Idiosyncratic Noise

In the baseline model, noise was a purely aggregate shock, which was crucial for
the amplification of noise shocks. In this section, I relax that assumption. Now, the
possibility result becomes: if agents’ noise shocks are sufficiently correlated then noise
shocks can amplify business cycles.

The noise shock is modified to have an idiosyncratic component. Agents now
receive the signal

νi,t = εâ,i,t+κ + εa,t+κ + ζi,t (24)

which modifies equation (16) so that ζi,t is an island-specific noise component. This
component is the sum of two shocks:

ζi,t = ζt + ζ̂i,t

ζ̂i,t is an i.i.d. noise shock that is specific to island i and mean zero in the population.
As before, ζt is an aggregate noise shock.

I analyze the effects of idiosyncratic noise in the following way. The noise variance
is set to V ar(ζi,t) = (0.115)2 as in the baseline calibration. Then, the shock variances
are determined by a single weighting parameter wζ such that:

V ar(ζi,t) = wζV ar(ζt) + (1− wζ)V ar(ζ̂i,t) (25)
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The weight wζ controls how much of noise is aggregate versus idiosyncratic. When
wζ = 1, noise is only due to the aggregate shock ζt, recovering the baseline model.

When wζ = 0, noise is only due to the idiosyncratic shock ζ̂i,t. Keeping V ar(ζi,t) fixed
while changing the wζ is a useful exercise, because it keeps the exogenous signal’s
information structure of households unaffected except for the correlation of noise
across islands. I calibrate the weight wζ in two ways: a theoretical model of rational
inattention, and an empirical approach using industry-level data.

(a) Amplification with Idiosyncratic Noise (b) Relative Forecast Error Variances

Figure 8: Effects of Idiosyncratic Noise

Figure 8 panel (a) plots how amplification depends on the aggregate noise weight
wζ . The “Output Variance Amplification” (left axis) captures how much the in-
formation friction amplifies aggregate volatility by measuring the aggregate output
variance under dispersed information relative to full information. Meanwhile, the
“Output Variance due to Noise” (right axis) captures how much the noise contributes
to business cycle volatility by measuring what share of the aggregate output variance
is attributable to aggregate noise shocks.

It is clear that correlated noise is crucial for the baseline model to achieve am-
plification. As the weight wζ goes down, amplification falls and the share of output
volatility drive by noise shocks declines. When less than a quarter of noise is due
to aggregate shocks (the “Non-amplifying weight” in Figure 8) the model no longer
features amplification. This non-amplifying weight is still relatively large, implying
that the variance of idiosyncratic noise is only three times as large as aggregate noise,
while the variance of idiosyncratic productivity is more than an order of magnitude
larger than aggregate productivity. Finally, as the weight goes to zero, noise shocks
are entirely idiosyncratic, so noise no longer appears in the output variance decompo-
sition; in this case, the effect of noise on business cycles is only indirect, by distorting
agents’ forecasting ability.

What is a reasonable value for the weight wζ? The dotted line labeled “Asym-
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metric Attention” in Figure 8 panel (a) plots the calibrated weight that solves an
optimal attention problem. Agents control both noise variances and can pay a cost
to reduce the variance of either noise shock. Appendix C describes the assumptions
of this model in detail, but one conclusion is clear: agents prefer their signals to place
more weight on the aggregate noise shock ζt rather than the idiosyncratic noise shock
ζ̂i,t. This is because aggregate demand for an island’s output also depends on ζt.
Accordingly, when the aggregate weight wζ is higher, forecasting is improved in two
ways: the noisy signal allows agents to forecast demand more accurately, and the ob-
served demand allows agents to better disentangle noise from news in their individual
signal and forecast productivity more accurately. Figure 8 panel (b) demonstrates
these effects by plotting how the variance of agents’ forecast errors depend on the
weight wζ . As wζ increases and agents’ noise is more correlated, the variance of their
forecast errors for both productivity and demand decline, but their ability to forecast
future noisy signals is unaffected.

This resembles an asymmetric attention problem (Kohlhas and Walther, 2021):
different components of the signals asymmetrically affect forecasting ability, incen-
tivizing attention to be allocated asymmetrically. Agents are only indifferent between
aggregate and idiosyncratic noise in the case where wζ = 0, because if no other is-
lands’ signals have aggregate noise, then increasing or decreasing the aggregate weight
in a single agent’s signal has no affect on their forecasting ability. Otherwise, agents
prefer their noise to be aggregate, but how much weight they choose to place on the
aggregate component depends on the cost of doing so. Appendix C.2 shows that
when the cost is based on signal entropy, marginal cost is symmetric and agents will
choose wζ = 1. But if the marginal cost of reducing the a component’s variance is
increasing, then they will choose an interior solution where wζ ≥ 0.5, well above the
non-amplifying value. Appendix C.3 presents a conservative example of this kind,
where costs increase quickly enough that the optimal weight is close to one half; this
is the “Asymmetric Attention” value in Figure 8 panel (a).

I also conduct an empirical calibration of the weight wζ . To do so, I apply the
Chahrour and Jurado (2022) noise shock estimation to industry-level data. This
procedure identifies noise shocks by assuming that TFP is an exogenous process.
Then, if VAR-implied expectations of future TFP are not explained by current and
past TFP, they must contain noisy news signals about future realizations. Noise is
estimated as the component of these expectations that are orthogonal to TFP at all
future, current, and past horizons. Appendix D describes this procedure in greater
detail. To map these estimates to the model, I calculate the variances of aggregate
and orthogonalized industry-level noise shocks, and then scale both variances so that
they sum to the baseline noise variance. Converting to a weight per equation (25)
gives wζ = 0.48 in the preferred specification (the “Empirical Estimate” in Figure 8
panel (a)), but other estimates range from 0.30− 0.67.

Altogether, this analysis of idiosyncratic noise demonstrates that the model’s am-
plification result is a conditional one: if noise is sufficiently correlated, then it can
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amplify business cycles.14 It is not surprising that this result requires a specific con-
dition, given that the theoretical business cycle literature has thus far found small
roles for noise. The empirical literature finds large effects of aggregate noise, so
correlated noise shocks provide a possible resolution to this disagreement. Both theo-
retical microfoundations and evidence from industry data suggest that this resolution
is feasible.

5.2 Parameter Sensitivity

In this section, I vary the parameter values in the baseline model that are not well
disciplined by the literature, and examine how changing these values affects the inci-
dence of noise shocks and the information friction. Figure 9 plots how changing each
parameter affects two quantities in the model, while keeping the remaining param-
eter values at their baseline levels without any policy intervention. As in Figure 8,
the “Output Variance Amplification” is plotted on the left axes, measuring the out-
put volatility relative to full information, while the ‘Output Variance due to Noise”
is plotted on the right axes, reporting the variance decomposition due to aggregate
noise shocks.

There are three main conclusions from this analysis. First, varying the noise shock
standard deviation σζ is flexible enough to match almost any role for noise shocks
in aggregate volatility. In the calibration, this is done to target 60%, the estimate
by Chahrour and Jurado (2022), in line with other reduced form evidence, but much
larger than implied by FIRE business cycle theories. Second, this ability is not
constrained by the other economic parameters; varying the demand shock standard
deviation σξ and the elasticity of substitution η do not substantially the importance
of noise for the business cycle. However, the third conclusion is that other properties
of the information process are relevant. In particular, if the time between news and
shock realization is short, it limits the potential influence of noise on macroeconomy
volatility.

The standard deviation of the noise shock σζ has a non-monotonic effect on both
measures (panel (a)). When the standard deviation is small, the noise shock can only
contribute a small amount to aggregate variances, even though the effects of a noise
shock are large. And when the standard deviation is large, the effects of a noise shock
eventually start to decline because the news signal starts to become a poor predictor
of future productivity, so agents become inelastic to it. How in the intermediate
region, the effects of the noise shock can be very large; indeed, no parameter can
be varied to induce larger aggregate volatility than the noise shock. The baseline
parameter is an intermediate value.

The standard deviation of the demand shock σξ increases both measures, before

14However, the presence of idiosyncratic noise does not affect the qualitative conclusions about
optimal policy. Appendix E demonstrates that for any wζ > 0, policymakers are incentivized to
enact countervailing policy that discourages investment after aggregate noise shocks.
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(a) Noise Shock Standard Dev. (b) Demand Shock Standard Dev.

(c) Elasticity of Substitution (d) News Horizon

Figure 9: Parameter Sensitivity

tapering off (panel (b)). When this standard deviation is low, demand is an infor-
mative signal of aggregate output, which helps agents tell whether their news signals
are driven by idiosyncratic or aggregate shocks. This in turn helps them tell whether
their signal is determined by fundamentals or noise, because noise only affects the
aggregate component. Thus when demand is informative, agents can better predict
the aggregate state of the economy, and volatility is lower. However, there is also a
counterintuitive effect: when demand is more informative, the contribution of noise
shocks to the aggregate business cycle is larger. This is because islands place more
weight on the demand signal than their news signal, and noise shocks contribute to
a larger share of the volatility of the demand signal than the news signal. In both
cases, the effect of σξ plateaus rapidly, because once the variance is large, additional
increases have little effect on the informativeness of the signal.

The elasticity of substitution η decreases both measures (panel (c)). When the
elasticity of substitution is larger, productivity matters more for an island’s revenue:
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when η = 1 productivity has no effect on revenue, but as η → ∞ productivity in-
creases revenue one-for-one. So as η gets larger, islands care more about forecasting
their own idiosyncratic productivity and less about forecasting aggregate demand.
This reduces the weight they put on their demand signal, which is disproportion-
ately driven by aggregate noise shocks, reducing the effects of noise on business cycle
volatility.

Finally, panel (d) plots the news horizon κ, which is the number of periods between
when a productivity shock affects the news signal and when the change in productivity
is realized. Lengthening the horizon increases the amount of time agents have to act
on a news signal, expecting future productivity improvements. This gives them more
time to ramp up investment, raising the capital stock and future output. Unlike the
other parameters, this does not clearly affect the immediate elasticity of investment
to news signals, but it increases the duration of noise-driven expansions before they
collapse, which raises aggregate volatility and the contribution of noise shocks.

6 Conclusion

In this paper I studied the business cycle effects of noise shocks when agents have
dispersed information. I found that the information friction allows noise shocks to
produce large macroeconomic fluctuations that are common enough to generate a
large share of business cycle volatility (Table 2). The crucial assumption is that
individuals’ noise shocks are sufficiently correlated (Figure 8).

Then, I examined optimal policy rules for an intervention via the investment
wedge. I found that policymakers should discourage investment during booms and
encourage it during busts. This conclusion holds regardless of what the policymaker’s
information set is.

To implement such a policy, it is essential that policymakers work to identify
aggregate news in the economy – or even better, aggregate noise. If they have an
informational advantage that allows even partial identification of such objects, mod-
eration of noise-driven fluctuation becomes feasible.
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A Linearization

Solving the model requires log-linearizing the equilibrium conditions. I report these
linear equations in this section. There are exactly as many equilibrium conditions
as endogenous choice variables. Some additional variables may be endogenous but
individual agents take as exogenous (such as aggregate demand).

Steady state values are denoted with overbars (e.g. steady state consumption is
C̄) while log deviations are denoted as lower case variables (e.g. the consumption
deviation is ci,t).

I express the linear equilibrium conditions for the model as a set of 8 equations
with 8 choice variables: output yit, consumption ci,t, capital ki,t, investment ii,t, labor
ni,t, utilization ui,t, Tobin’s Q qi,t, and the stochastic discount factor mi,t. 3 additional
variables that individual islands cannot affect are: productivity ai,t, demand di,t, and
(when considering policy) the investment wedge τi,t.

The log-linearized production function is

yit = ai,t + α(ui,t + ki,t) + (1− α)ni,t (26)

The log-linearized Euler equation is

qi,t = τi,t+Ei,t

[
mi,t+1 + βR̄

(
η − 1

η
yit+1 − ki,t+1 + di,t+1

)
+ β(1− δ(Ū))(qi,t+1 − δ′(Ū)Ūui,t+1)

]
(27)

where R̄ ≡ 1/β + δ − 1.
The log-linearized stochastic discount factor is

mi,t+1 =
1

C̄ − χ
(
C̄(ci,t − ci,t+1)− χθ(ni,t − ni,t+1)

)
(28)

with χ chosen to normalize N̄ = 1.
The log-linearized first order condition for investment is

ii,t =
1

ϕ′′(1)(1 + β)
qi,t +

1

1 + β
ii,t−1 +

β

1 + β
Ei,t [ii,t+1] (29)

The log-linearized first order condition for capital utilization is

η − 1

η
yit − ui,t + di,t = qi,t + ki,t + δ′′(Ū)Ūui,t (30)

The log-linearized first order condition for labor is

η − 1

η
yit − ni,t + di,t = (θ − 1)ni,t (31)

The log-linearized law of motion is

ki,t+1 = (1− δ(Ū))ki,t + δ(Ū)ii,t − δ′(Ū)Ūui,t (32)

The log-linearized budget constraint is

Ȳ

(
di,t +

η − 1

η
yit

)
= C̄ci,t + Īii,t (33)
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B Calculating Welfare

The policymaker chooses its policy rule to maximize the unconditional expectation
of household welfare. The standard approach in linear models is to evaluate the
second-order approximations of the welfare function (Woodford (2003)). However, a
complication arises: the deterministic steady state is not an accurate approximation
point. Policy can change dynamics enough to affect the stochastic steady state.15

The welfare derivation proceeds in two parts: first Section B.1 derives how dynamics
affect the second-order terms in the welfare approximation, then Section B.2 derives
how to calculate the effect of dynamics on the stochastic steady state.

B.1 Derivation of Welfare Approximation

The welfare measure Wi,t for island i at time t is expected utility (1):

Wi,t = Ei,t

[
∞∑
s=0

βs ln
(
Ci,t+s − χN θ

i,t+s

)]
(34)

The second order approximation around the stochastic steady state W is

Wi,t ≈ W + Ei,t

[
∞∑
s=0

βs

(
C

C − χN θ
ci,t+s −

χθN
θ

C − χN θ
ni,t+s

+
1

2

 C

C − χN θ
− C

2(
C − χN θ

)2

 c2
i,t+s

− 1

2

 χθ2N
θ

C − χN θ
+

(
χθN

θ
)2

(
C − χN θ

)2

n2
i,t+s

+
CχθN

θ(
C − χN θ

)2 ci,t+sni,t+s


 (35)

Unconditional expectations of the first order terms are zero, so the expected welfare
deviation from the steady state is given by the unconditional expectation of the second
order terms:

E
[
Wi,t −W

]
≈ E

[
−$CCc

2
i,t+s −$NNn

2
i,t+s +$CNci,t+sni,t+s

]
∀i

15Sometimes this is referred to as the “risky” steady state (Coeurdacier, Rey, and Winant, 2011)
instead.
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where $CC ≡ 1
2(1−β)

CχN
θ(

C−χNθ
)2 , $NN ≡ 1

2(1−β)
Cχθ2N

θ(
C−χNθ

)2 , and $CN ≡ 1
(1−β)

CχθN
θ(

C−χNθ
)2 .

Converting to variances yields

= −$CCV ar(ci,t)−$NNV ar(ni,t) +$CNCov(ci,t, ni,t) (36)

B.2 Calculating the Stochastic Steady State

Kim and Kim (2003) and Woodford (2003) caution that the standard second-order
approximation of welfare only yields accurate analysis when alternative policies do
not affect the stochastic steady state W . Policies that affect consumption variance are
well known to affect the stochastic steady state in open economy models, but even in
closed economy real business cycle models, this channel affects welfare comparisons,
as in Cho, Cooley, and Kim (2015) and Heiberger and Maußner (2020). This literature
argues that accurately evaluating welfare requires using second order approximations
of the equilibrium conditions or other perturbations to measure how variances deter-
mine the stochastic steady state. However, these methods quickly become intractable
in the present model with dispersed information, endogenous signals, and capital.

Therefore, instead of an analytical approximation, I compute the effects of vari-
ances on the stochastic steady state W numerically. Approximating models to the
second order implies that the stochastic steady state is a function of variance terms:

W = f(V ar(mi,t), V ar(rN,i,t), Cov(mi,t, rN,i,t)) (37)

W can be written in this way because it is not a function of the policy parameters
directly; they do not affect the deterministic steady state so they only affect the
stochastic steady state through their effects on dynamics. The only second order
terms that affect the stochastic steady state are variance terms in the expectational
equations. In this model, the only expectational equation is the Euler equation (6),
which depends on the variances and covariance of the log stochastic discount factor
mi,t and the net return on capital rN,i,t, which is defined in levels by

RN,i,t+1 =
RK,i,t+1Ui,t+1 +Qi,t+1 (1− δ(Ui,t+1))

Qi,t

(38)

Let ~V1 denote the vector of variance terms affecting the stochastic steady state in
equation (37), and let ~V2 denote the vector of variance terms affecting the second order
expansion in equation (36). The ∗ superscript denotes values in the full information
equilibrium and 1 denotes a column vector of ones. The welfare equation (35) can then
be written as a quadratic in terms of variances by taking a second order approximation
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of the stochastic steady state function (37):

W (~V1, ~V2)

≈ W ∗+
∂SOE

∂~V1

|′~V ∗
1

(~V1− ~V ∗1 ) +
∂f

∂~V2

|′~V ∗
2

(~V2− ~V ∗2 ) +
1

2
1′
∂2f

∂~V 2
2

|~V ∗
2
◦ (~V2− ~V ∗2 )(~V2− ~V ∗2 )′1

(39)

where ∂SOE

∂~V1
|~V ∗

1
and ∂f

∂~V2
|~V ∗

2
are gradients at the full information equilibrium, ∂2f

∂~V 2
2

|~V ∗
2

is

the Hessian matrix, and ◦ denotes the Hadamard product.
The key insight to this numerical method is that the first-best aggregate policy

under a full information is to eliminate the information friction entirely. This implies
that the full information welfare function of the policy parameters W FI(bν , ba, bz) is
at its maximum when bν = ba = bz = 0. Accordingly, the numerical derivative (39)

can be calculated by perturbing the vector ~b = (bν , ba, bz)
′ around the origin. For

accuracy, the perturbation around the full information point should be symmetric,
i.e. perturbing ~b = ±∆ rather than in a single direction. Optimality implies:

0 =
dW (~V1, ~V2)

d~b
|~b=0

=
∂SOE

∂~V1

|′~V ∗
1

d~V1

d~b
|~b=0 +

∂f

∂~V2

|′~V ∗
2

d~V2

d~b
|~b=0 +

1

2

∑
i,j

∂2f

∂~V2,i∂~V2,j

|~V ∗
2

d~V2,i
~V2,j

d~b
|~b=0

where ~V2,i denotes the ith entry in ~V2. The vector ∂SOE

∂~V1
|~V ∗

1
is known analytically,

the square matrices ∂~V1
∂~b
|~b=0 and ∂~V2

∂~b
|~b=0 and the vectors

d~V2,i~V2,j

d~b
|~b=0 can be found by

perturbation, so the vector ∂f

∂~V2
|′~V ∗

2

and Hessian ∂2f

∂~V 2
2

|~V ∗
2

can be calculated.

With the equation (39) derivatives in hand, W (~V1, ~V2) can now be directly com-

pared across policies, by calculating their implied variance vectors ~V1 and ~V2. This
computational strategy works by fitting a quadratic approximation of the welfare
function around the full information equilibrium. It assumes that full information
is optimal (at least relative to the policymaker’s possible rules) in order to identify
the derivatives of the welfare function, so this welfare approximation ensures that
relaxing the information friction is the first-best policy.

B.3 Intertemporal Decomposition

This section describes the decomposition of the welfare function into pre- and post-
signal realization components, which are used in Section 4.3 to understand policy
trade-offs.

The numerical approach to calculating expected welfare derived in this appendix
depends on variances and covariances of several economic variables: the calculation
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of the stochastic steady state (39) depends on the covariance matrix of stochastic
discount and capital return, while the deviation from the stochastic steady state (36)
depends on the covariance matrix of consumption and labor. Taken together, express
this function of covariances by

E [Wi,t] = g(~C)

where ~C is a vector of unconditional variances and covariances.
Every covariance can be decomposed into terms that depend on shocks before and

after signals are realized into productivity or noise. Consider any two variables x1
t

and x2
t given by lag-operator polynomials xit =

∑∞
j=0X

i
jL

j~εt of the shock vector ~εt.
The covariance is

Cov(x1
t , x

2
t ) =

∞∑
j=0

X1
j V ar(~εt)(X

2
j )′

The pre-realization component CovPre(x
1
t , x

2
t ) is the variance due to the first κ periods

of responses to shocks, while the post-realization component CovPost(x
1
t , x

2
t ) is the

variance due to the remaining component:

CovPre(x
1
t , x

2
t ) =

κ∑
j=0

X1
j V ar(~εt)(X

2
j )′ CovPost(x

1
t , x

2
t ) =

∞∑
j=κ+1

X1
j V ar(~εt)(X

2
j )′

Accordingly, the vector of covariances ~C is the sum of vectors of pre- and post-
realization covariance components:

~C = ~CPre + ~CPost

Finally, the pre-realization welfare component WPre is the component that de-
pends only on pre-realization covariances:

WPre ≡ g(~CPre)

while the post-realization is the residual, which includes both post-realization covari-
ances and interaction terms:

WPost ≡ g(~C)− g(~CPre)

so that E [Wi,t] = WPre +WPost.

B.4 Derivation of Consumption Equivalents

This section derives the consumption equivalent welfare costs of business cycles under
alternative policies, similar to the strategy used by Lucas (1987) and Lucas (2003).

Consider the expected welfare in the baseline model WB. Let CB denote the fixed
level of consumption that households would be willing to accept while working the
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steady state level of hours N in order to entirely eliminate macroeconomic volatility.
This consumption level solves

WB =
ln(CB − χN

θ
)

1− β

which is the welfare value implied by equation (34) when consumption and labor are
fixed.

The consumption-equivalent cost of volatility in the baseline is the difference be-
tween the steady state and this alternative consumption level CB:

C − CB = C − e(1−β)WB + χN
θ

Thus the consumption equivalent cost measures how much average consumption a
household would be willing to give up in order to eliminate all risk, conditional on
continuing to work the same average hours.

Similarly, let CA denote the corresponding level of consumption under an alter-
native policy, so that C − CA is the consumption-equivalent cost of volatility in the
alternative equilibrium. Measured in consumption equivalents, the welfare gain of
moving from the baseline to the alternative equilibrium is CA − CB, which is given
by

CA − CB = e(1−β)
(
eWA − eWB

)
(40)

C Optimal Noise

This section models the decision of agents who must choose the variance of the noise
shocks that they face. I maintain the assumption that agents exactly observe the
contemporaneous and past variables that directly affect them, but can pay some
cost to reduce the noise in their signals about future productivity. This is modeled
as a two-stage decision-making process: first, agents calculate their expected welfare
conditional on their noise processes, then agents select the optimal noise process given
some cost function.

C.1 Optimal Signal Problem

I modify the process for the signal with idiosyncratic noise (24):

νi,t = εâ,i,t+κ + εa,t+κ +
s̄i
σζ
ζt +

ŝi
σζ̂
ζ̂i,t

Agents on island i control the variables s̄i and ŝi, which scale the contributions of
aggregate and idiosyncratic noise shocks to the signal νi,t. I modify the signal in this
way so that agents can affect the contribution of aggregate noise to their own signal,
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but cannot directly control the variance of ζt which also affects the aggregate economy
in equilibrium. The variables s̄i and ŝi are scaled by the standard deviations σζ and
σζ̂ so that the variances of aggregate and idiosyncratic noise in the signal are s̄2

i and

ŝ2
i respectively.

The representative household on island i chooses the noise shock variances s̄2
i and

ŝ2
i , taking all other agents’ choices as given, in order to maximize expected future

welfare as given by equation (34), less a utility cost K (s̄2
i , ŝ

2
i ) that is decreasing in

the shock variances:
max
s̄2i ,ŝ

2
i≥0

E [Wi,t]−K
(
s̄2
i , ŝ

2
i

)
(41)

As in Maćkowiak and Wiederholt (2015), agents make this choice once for all peri-
ods based on their unconditional expectation, then the economy runs forever in the
stationary equilibrium associated with the noise choices.

I assume a symmetric cost function K(s̄2
i , ŝ

2
i ) so as not to ex ante bias agents

towards preferring one type of noise over another. The first order conditions for this
problem (for an interior solution) are:

∂E [Wi,t]

∂s̄2
i

=
∂K(s̄2

i , ŝ
2
i )

∂s̄2
i

∂E [Wi,t]

∂ŝ2
i

=
∂K(s̄2

i , ŝ
2
i )

∂ŝ2
i

If these choices only affected welfare by increasing the forecast accuracy of future
productivity, a symmetric and convex cost function would imply that agents would
choose s̄2

i = ŝ2
i . Agents would be indifferent about the source of the noise in their

signals, and the cost of reducing each type of noise is increasing, so they would
reduce noise symmetrically. But the noise shocks are not symmetric: they are equally
informative about future productivity, but not about the remaining macroeconomic
aggregates that households have incentive to forecast. If other agents choose any
weight on aggregate noise at all, then the household will strictly prefer their own noise
be aggregate instead of idiosyncratic. This leads households to choose asymmetric
attention (Kohlhas and Walther, 2021) in equilibrium.

With this asymmetric incentive, an exact form for the cost function K(s̄2
i , ŝ

2
i )

must be assumed in order to solve the model. I consider two forms: a standard
entropy-based cost which leads to an aggressive weighting on aggregate noise, and a
separable cost linear in precisions, which leads to a conservative weighting of the two
components.

C.2 Entropy-based Cost

In the standard rational inattention model (Sims, 2003), agents observe a noisy sig-
nal, and pay a cost that depends on the mutual information. This structure has a
natural mapping to the present setting: agents are observing a noisy signal νi,t of
their future productivity innovation εâ,i,t+κ + εa,t+κ. When shocks are Gaussian, the
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mutual information I(εâ,i,t+κ + εa,t+κ, νi,t) is

I(εâ,i,t+κ + εa,t+κ, νi,t) =
1

2
log2

(
σ2
a + σ2

â

s̄2
i + ŝ2

i

+ 1

)
and agents solving problem (41) pay a cost propotional to the mutual information
(by scalar µ):

K(s̄2
i , ŝ

2
i ) = µ

1

2
log2

(
σ2
a + σ2

â

s̄2
i + ŝ2

i

+ 1

)
This problem has a simple solution because of the collinear way that noise vari-

ances enter the mutual information function. Each component of the noise process
has the same marginal cost :

∂K(s̄2
i , ŝ

2
i )

∂s̄2
i

=
∂K(s̄2

i , ŝ
2
i )

∂ŝ2
i

This is because aggregate and idiosyncratic noise shocks have the same effect on the
informativeness of the signal. So the household’s solution is to minimize the variance
of whichever noise shock has a more negative effect on marginal welfare. This is
always the private shock.

For any total noise variance, the household strictly prefers a process where the con-
tributing shocks are entirely aggregate. This is because both types of noise reduce the
households information about productivity, but the aggregate noise shock increases
the household’s information about aggregate demand for their output. Section 5.1
describes this effect in greater detail, and Figure 8 panel (b) makes the mechanism
clear: raising the relative contribution of the aggregate noise shock improves forecast-
ing accuracy for both demand and productivity.

Figure 10 demonstrates that agents strictly prefer lowering the idiosyncratic noise
variance ŝ2

i before lowering the aggregate noise variance s̄2
i . The figure plots the

difference between the marginal welfares net of their marginal costs:

Net Marginal Benefit =

(
∂E [Wi,t]

∂s̄2
i

− ∂K(s̄2
i , ŝ

2
i )

∂s̄2
i

)
−
(
∂E [Wi,t]

∂ŝ2
i

− ∂K(s̄2
i , ŝ

2
i )

∂ŝ2
i

)
For the entropy-based cost (solid blue line), the marginal costs are equal, so this is
just the difference between marginal welfares. The marginal welfare of increasing s̄2

i

is always higher than for ŝ2
i , except when the economy-wide weight is wζ = 0, at

which point agents are indifferent between the sources of their noise. The marginal
welfare difference is not continuous at this point (it jumps discretely in Figure 10),
and for every other value the curve is strictly positive. This implies that wζ = 1 is
the equilibrium; given any nonzero amount of noise, agents must select a variance
allocation with all weight on the aggregate component.

The entropy-based cost is extreme in it’s prediction: the optimal noise problem
has a corner solution because the marginal cost of decreasing aggregate vs idiosyn-
cratic noise is always the same. But what if each type of noise has an independently
increasing marginal cost? This leads to an interior solution.
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Figure 10: Net Marginal Benefits of s̄2
i − ŝ2

i (Normalized)

C.3 Linearity in Precisions

As an alternative, I consider a cost function that is linear in the precision of each
noise component:

K(s̄2
i , ŝ

2
i ) = φ

1

s̄2
i

+ φ
1

ŝ2
i

with a common coefficient φ to maintain the symmetry of each type of noise shock.
Linearity in precisions is enough to ensure an interior solution, at least in this model,
because the marginal cost is decreasing in shock variances fast enough to maintain
single crossing with marginal welfare.

The implied first order conditions are:

∂E [Wi,t]

∂s̄2
i

= −φ 1

s̄2
i

∂E [Wi,t]

∂ŝ2
i

= −φ 1

ŝ2
i

Note that the marginal costs are negative, but marginal welfares are as well: increasing
signal noise reduces forecastability and welfare.

To find a solution on the wζ curve studied in Section 5.1, I calibrate the cost
function by implicitly choosing φ so that s̄2

i + ŝ2
i = (0.115)2. The values that both

satisfy this equation and the combined first order conditions
∂E[Wi,t]

∂s̄2i
s̄2
i =

∂E[Wi,t]

∂ŝ2i
ŝ2
i

correspond to an aggregate noise weight of wζ = 0.50, just above one half. This
can be seen in Figure 10, where the net marginal benefit corresponding to the linear
cost function (dashed red line) intersects zero at 0.50. This implies that wζ = 0.50
is the equilibrium; this is the interior solution where an agent’s optimal individual
allocation of aggregate vs. idiosyncratic noise matches the economy-wide allocation.

This quantitative solution is specific to the linear cost function chosen. But more
generally, if the cost function is symmetric and convex in precisions, agents will always
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choose a noise allocation corresponding to wζ ≥ 0.50, because they strictly prefer to
reduce the idiosyncratic component of their noise relative to the aggregate component.

D Noise Shock Estimation

This section describes how I estimate the idiosyncratic noise process in Section 5.1
by adapting the Chahrour and Jurado (2022) procedure to industry-level data.

D.1 Identification

Let ai,t denote log TFP in industry i at time t. at denotes aggregate log TFP, and âi,t
denotes the orthogonal component of industry log TFP, so that ai,t = at + âi,t. I use
lower-case variables to differentiate from the explicitly modeled processes in Section 2.
Instead, the components of TFP are assumed to have general autoregressive processes:

at =
na∑
j=1

Ba,jat−j + εa,t âi,t =

nâ∑
j=1

Bâ,j âi,t−j + εâ,i,t (42)

where εa,t and εâ,i,t are i.i.d. white noise shocks.

Let bt and b̂i,t denote κ-period-ahead forecasts, conditional on vectors of time
series yt and ŷi,t and TFP:

bt = E[at+κ|{yt−j, at−j}naj=0] b̂i,t = E[âi,t+κ|{ŷi,t−j, âi,t−j}nâj=0] (43)

The time series ŷi,t is orthogonalized with respect to aggregate time series yt, so b̂i,t
and bt are necessarily orthogonal as well.

The main identifying assumption is that absent any news about future TFP, equa-
tion (42) implies that the forecast would only depend on current and past productiv-
ities, with no weight on the other time series. Thus the orthogonalized forecasts b⊥t
and b̂⊥i,t capture the contribution of news and noise to expectations:

b⊥t = E[at+κ|{yt−j, at−j}naj=0]− E[at+κ|{at−j}naj=0]

b̂⊥i,t = E[âi,t+κ|{ŷi,t−j, âi,t−j}nâj=0]− E[âi,t+κ|{âi,t−j}nâj=0] (44)

The components of b⊥t and b̂⊥i,t that are also orthogonal to future productivity

capture noise alone. For horizons ma and mâ, the noise components b∗t and b̂∗i,t are
given by

b∗t = b⊥t − E[b⊥t |{at+j}maj=1] b̂∗i,t = b̂⊥i,t − E[b̂⊥i,t|{âi,t+j}
mâ
j=1] (45)

Finally, the noise components may be autocorrelated, so they are written in terms of
the i.i.d. noise shocks ζt and ζ̂i,t:

b∗t =

nb∑
j=1

Bb,jb
∗
t−j + ζt b̂∗i,t =

nb̂∑
j=1

Bb̂,j b̂
∗
i,t−j + ζ̂i,t (46)
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Noise shocks are identified by estimating equations (43), (44), (45), and (46) by OLS.

D.2 Data

Chahrour and Jurado (2022) estimate their VAR using 7 time series at quarterly
frequencies. When estimating the model, I attempt to follow their choices as closely
as possible, but some changes are unavoidable. First, I have to use annual instead
of quarterly data, because quarterly TFP measures are unavailable or poor at the
industry level. Second, while some of their time series have clear available analogs at
the industry level, others do not, so the industry forecasts employ fewer time series.

Industry data are from the NBER-CES Manufacturing Industry Database (Becker,
Gray, and Marvakov, 2021) aggregated at the 4-digit SIC code level. This dataset
contains estimates from 1958-2018 of inputs, output, and TFP estimated using cap-
ital, production labor, non-production labor, energy, and materials. Unlike in the
aggregate data, TFP is not directly adjusted for capital utilization, although utiliza-
tion is correlated with other inputs besides labor. The other source for industry data
is CRSP Stocks from which I construct indices of equity returns at the 4-digit SIC
industry level. Table 4 lists the remaining time series used for estimation. Following
Chahrour and Jurado (2022), all time series are differenced once before estimation to
remove unit roots in TFP and trends more generally.

Series Name Source

Aggregate Series Log Utilization-Adjusted TFP SF Fed (Fernald, 2014)
Log Real GDP NIPA

Log Real Non-Durable Consumption NIPA
Inflation (GDP Deflator) NIPA

Log Hours NIPA
3-Month Nominal T-Bill Yields Federal Reserve

Log Real Value-weighted Stock Price Index CRSP

Industry-specific Series Log TFP NBER-CES
Log Real Output NBER-CES

Log Hours (All Employees) NBER-CES
Log Real Value-weighted Stock Price Index CRSP

Table 4: Time Series Used for Noise Shock Estimation

D.3 Estimates

When estimating, I set nb = nb̂ = 2; Chahrour and Jurado (2022) use four quarters,
but a single lagged year is not enough to whiten the noise shocks. Otherwise, I map
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their remaining parameters to an annual frequency as closely as possible: κ = 5,
ma = mâ = 5, and na = nâ = 3.

Table 5 reports the estimated noise shock variances from several specifications.
For aggregate noise, I run the regressions using all seven time series, as well as only
the subset of four that have industry-specific analogs (TFP, output, hours, and the
stock price index). I also run these specifications using both the full sample and the
short sample that matches the same years for which industry-specific estimates are
available. The results are broadly similar across these specifications. I choose the
long sample with the four common series as the preferred specification (in bold).

For the industry-specific noise, I run three specifications that implied more varied
results. My preferred estimate (in bold) pools all industries, which is most resembles
the economic model. A specification including industry-specific fixed effects implies
lower industry-specific noise variance, but is exposed to the standard concerns when
estimating dynamic panel regressions with fixed effects.16 I also perform the entire
estimation separately by industry, aggregating at the 2-digit SIC level, and using
only industries with at least 30 observations. This specification implies the high-
est idiosyncratic noise variance. This dynamic panel regression features additional
concerns specific to this estimation procedure, because any measurement error that
affects the econometrician but not firms will overstate the effects of noise shocks.

Noise Shock Variance Baseline-Implied wζ Shock Observations Sample Period

Aggregate Estimates
Common 4 series (0.0049)2 65 1955-2019

Common 4 series (short sample) (0.0051)2 48 1966-2013
Full 7 series (0.0050)2 65 1955-2019

Full 7 series (short sample) (0.0050)2 48 1966-2013

Industry-specific Estimates
Pooled (0.0051)2 0.48 10,561 1966-2013

Industry fixed effects (0.0034)2 0.67 10, 561 1966-2013
Pooled within 2-digit SIC (0.0084)2 0.30 10, 561 1966-2013

Table 5: Shock Variance Estimates

In order to calibrate the aggregate noise weight wζ that achieve the baseline cali-
brations for total noise variance (Table 1), I look for a common scaling factor λζ that
solves

V ar(ζi,t) = λζV ar(ζt) + λζV ar(ζ̂i,t)

for the estimates V ar(ζt) and V ar(ζ̂i,t), and the calibrated value V ar(ζi,t) = (0.115)2.
To map back to the noise-weighting representation in equation (25), the aggregate

16Nickell bias (Nickell, 1981) in dynamic panel regressions is known to attenuate coefficient esti-
mates, but it is not clear if the effect on the estimated noise variance is attenuating or amplifying.
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noise weight wζ is given by

wζ =
λζV ar(ζt)

λζV ar(ζt) + λζV ar(ζ̂i,t)

Table 5 reports these weights in the third column, by industry-specific specification.
In each case, the weight uses estimated aggregate variance from the preferred speci-
fication – the long sample with the four common series.

E Idiosyncratic Noise and Policy Incentives

What are the incentives to enact a countervailing policy rule?
Figure 11 plots the marginal welfare (solid blue line) of increasing the policy

elasticity bν against the aggregate noise weight of equation (25). In all cases, the
marginal elasticity is negative (normalized relative to the wζ = 1 baseline): decreasing
the elasticity bν of the investment wedge to the aggregate signal is welfare improving.
This matches the conclusion from the baseline calibration that policy should “lean
against the wind.” Qualitatively, this conclusion is independent of wζ ; whether the
aggregate component of noise is large or small, agents will over-invest in response to
it, so the policymaker can improve welfare by discouraging investment.

Figure 11: Marginal Policy Rule Effects with Idiosyncratic Noise

The aggregate noise weight wζ does matter quantitatively. The marginal welfare
with respect to the policy parameter decreases in magnitude as the aggregate noise
weight shrinks. This occurs because aggregate noise shocks are rarer; changing the
elasticity bν has a smaller effect on the variances of other macroeconomic aggregates.
Figure 11 demonstrates this channel by plotting the marginal effect of the policy
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elasticity bν on the output amplification in the model (dashed red line). When wζ
is large, the aggregate noise variance is large and a given bν will have a large effect
on output volatility. Conversely, when wζ is small, the same elasticity bν will have a
small effect on output volatility, shrinking to zero as the aggregate noise component
disappears.
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